2,396 research outputs found

    Cytokine release syndrome in COVID-19 patients, a new scenario for an old concern. The fragile balance between infections and autoimmunity

    Get PDF
    On 7 January 2020, researchers isolated and sequenced in China from patients with severe pneumonitis a novel coronavirus, then called SARS-CoV-2, which rapidly spread worldwide, becoming a global health emergency. Typical manifestations consist of flu-like symptoms such as fever, cough, fatigue, and dyspnea. However, in about 20% of patients, the infection progresses to severe interstitial pneumonia and can induce an uncontrolled host-immune response, leading to a life-threatening condition called cytokine release syndrome (CRS). CRS represents an emergency scenario of a frequent challenge, which is the complex and interwoven link between infections and autoimmunity. Indeed, treatment of CRS involves the use of both antivirals to control the underlying infection and immunosuppressive agents to dampen the aberrant pro-inflammatory response of the host. Several trials, evaluating the safety and effectiveness of immunosuppressants commonly used in rheumatic diseases, are ongoing in patients with COVID-19 and CRS, some of which are achieving promising results. However, such a use should follow a multidisciplinary approach, be accompanied by close monitoring, be tailored to patient’s clinical and serological features, and be initiated at the right time to reach the best results. Autoimmune patients receiving immunosuppressants could be prone to SARS-CoV-2 infections; however, suspension of the ongoing therapy is contraindicated to avoid disease flares and a consequent increase in the infection risk

    Targeting supermassive black hole binaries and gravitational wave sources for the pulsar timing array

    No full text
    This paper presents a technique to search for supermassive black hole binaries (MBHBs) in the Sloan Digital Sky Survey (SDSS). The search is based on the peculiar properties of merging galaxies that are found in a mock galaxy catalog from the Millennium Simulation. MBHBs are expected to be the main gravitational wave (GW) sources for pulsar timing arrays (PTAs); however, it is still unclear if the observed GW signal will be produced by a few single MBHBs, or if it will have the properties of a stochastic background. The goal of this work is to produce a map of the sky in which each galaxy is assigned a probability of having suffered a recent merger, and of hosting a MBHB that could be detected by PTAs. This constitutes a step forward in the understanding of the expected PTA signal: the skymap can be used to investigate the clustering properties of PTA sources and the spatial distribution of the observable GW signal power; moreover, galaxies with the highest probabilities could be used as inputs in targeted searches for individual GW sources. We also investigate the distribution of neighboring galaxies around galaxies hosting MBHBs, finding that the most likely detectable PTA sources are located in dense galaxy environments. Different techniques are used in the search, including Bayesian and Machine Learning algorithms, with consistent outputs. Our method generates a list of galaxies classified as MBHB hosts, that can be combined with other searches to effectively reduce the number of misclassifications. The spectral coverage of the SDSS reaches less than a fifth of the sky, and the catalog becomes severely incomplete at large redshifts; however, this technique can be applied in the future to larger catalogs to obtain complete, observationally-based information of the expected GW signal detectable by PTAs

    2D kinematics of the edge-on spiral galaxy ESO 379-G006

    Full text link
    We present a kinematical study of the nearly edge-on galaxy ESO 379-G006 that shows the existence of extraplanar ionized gas. With Fabry-Perot spectroscopy at H-alpha, we study the kinematics of ESO 379-G006 using velocity maps and position-velocity diagrams parallel to the major and to the minor axis of the galaxy. We build the rotation curve of the disk and discuss the role of projection effects due to the fact of viewing this galaxy nearly edge-on. The twisting of the isovelocities in the radial velocity field of the disk of ESO 379-G006 as well as the kinematic asymmetries found in some position-velocity diagrams parallel to the minor axis of the galaxy suggest the existence of deviations to circular motions in the disk that can be modeled and explained with the inclusion of a radial inflow probably generated by a bar or by spiral arms. We succeeded in detecting extraplanar Diffuse Ionized Gas in this galaxy. At the same time, from the analysis of position-velocity diagrams, we found some evidence that the extraplanar gas could lag in rotation velocity with respect to the midplane rotation.Comment: 61 pages, 15 figures. Accepted for publication in A

    Electroencefalograma Interictal. Sensibilidade e Especificidade no Diagnóstico de Epilepsia

    Get PDF
    O electroencefalograma (EEG) é um método não invasivo, económico e acessível, universalmente utilizado na investigação da epilepsia. Realizámos uma revisão dos principais trabalhos sobre a prevalência de actividade epileptiforme em EEGs de doentes epilépticos e não epilépticos, com o objectivo de tirar conclusões sobre a sensibilidade e especificidade deste exame no diagnóstico de epilepsia. Concluímos que o primeiro EEG tem uma sensibilidade global de 50-55% podendo atingir os 92% com a repetição do exame e recurso a registos de sono e técnicas de activação. A especificidade atinge os 96%, sendo afectada por múltiplos factores
    • …
    corecore